Blankets Joint Posterior score for learning Markov network structures
نویسندگان
چکیده
منابع مشابه
Blankets Joint Posterior score for learning Markov network structures
Markov networks are extensively used to model complex sequential, spatial, and relational interactions in a wide range of fields. By learning the structure of independences of a domain, more accurate joint probability distributions can be obtained for inference tasks or, more directly, for interpreting the most significant relations among the variables. Recently, several researchers have invest...
متن کاملUsing Markov Blankets for Causal Structure Learning
We show how a generic feature-selection algorithm returning strongly relevant variables can be turned into a causal structure-learning algorithm. We prove this under the Faithfulness assumption for the data distribution. In a causal graph, the strongly relevant variables for a node X are its parents, children, and children’s parents (or spouses), also known as the Markov blanket of X . Identify...
متن کاملSelecting Features by Learning Markov Blankets
In this paper I propose a novel feature selection technique based on Bayesian networks. The main idea is to exploit the conditional independencies entailed by Bayesian networks in order to discard features that are not directly relevant for classification tasks. An algorithm for learning Bayesian networks and its use in feature selection are illustrated. The advantages of this algorithm with re...
متن کاملLearning Markov Network Structures Constrained by Context-Specific Independences
This work focuses on learning the structure of Markov networks. Markov networks are parametric models for compactly representing complex probability distributions. These models are composed by: a structure and numerical weights. The structure describes independences that hold in the distribution. Depending on the goal of learning intended by the user, structure learning algorithms can be divide...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Approximate Reasoning
سال: 2018
ISSN: 0888-613X
DOI: 10.1016/j.ijar.2017.10.018